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We numerically and analytically study the self-organized criticality of a nonconservative and
globally coupled spring-block model. With a spring parameter and a time-scale parameter, this
model displays the dynamical states of two types which are different from each other in three
aspects: the stick-slip processes, the strain distribution functions, and the power laws of shock-
size distributions. Over a range of parameter space these two states may coexist. The transitions
between these two states as well as the phenomenon of hysteresis are first observed in the context
of spring-block models. A phase diagram is roughly sketched.

PACS number(s): 05.40.+j, 05.70.Fh

I. INTRODUCTION

A variety of complex systems in nature demonstrate
scaling properties with power-law correlations. The gen-
eral examples include complex spatial patterns and struc-
tures such as coastlines [1], and irreversible growth struc-
tures [2], and diverse temporal processes as in sand
flow [3,4], driven diffusive systems [5,6], and traffic trans-
portation [7]. These phenomena lack natural length and
time scales and instead possess scale-invariant or self-
similar features. The geometrical aspects of a scale-
invariant system have been successfully characterized by
means of fractals [1], while the necessary analytical tools
may be expected from the studies of critical phenom-
ena in statistical physics. In static critical phenomena,
the system exhibits fluctuations in all possible length
scales with the scale invariance, but the phase transi-
tion occurs at a critical point reached only by fine tuning
some parameters of the system. By contrast, for the dy-
namic phenomena with self-similarity where no fine tun-
ing is needed, Bak, Tang, and Wiesenfeld (BTW) argued
and demonstrated that dynamic systems naturally evolve
into self-organized critical states robust with respect to
variations of parameters and initial conditions [4]. This
generic behavior has been called self-organized criticality
(SOC) which is suggested probably to be the common
underlying mechanism behind the phenomena described
above.

The term SOC applies to systems that are driven ei-
ther completely deterministically at a very low rate, or
by random local perturbations, i.e., slow noise. A funda-
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mental result for driven nonequilibrium systems subject
to external white noise is that scale invariance can indeed
occur generically, but only in systems with either a con-
servation law or a specially continuous symmetry, such
as the translational invariance which allows even equilib-
rium interfaces to exhibit rough, scale-invariant phases
[5,8]. For these noise-driven systems it is believed that
the necessary requirement for SOC is that the dynam-
ics satisfy a conservation law. Nevertheless, with regard
to the generality of the concept of SOC, this is a crit-
ical aspect, since many natural phenomena have inher-
ent nonconservative properties. The discovery of the de-
terministic cellular-automaton model [9] displaying SOC
without a conservation law is of course somewhat sur-
prising and very interesting, since it suggests a different
mechanism for the generic generation of scale-invariant
structures. Then a few nonconservative dynamic models
have recently been argued to exhibit SOC [10,11].

In nature, earthquakes are probably the most relevant
paradigm of SOC, since there are several kinds of scale
invariance in the earthquake processes, which are given in
a power-law form in several empirical formulas (see, e.g.,
[12-15]). For example, the distribution of energy released
during earthquakes has been found to obey the famous
Gutenberg-Richter law [12]. The law is based on the
empirical observation that the number N of earthquakes
of magnitude M greater than m is given by the relation

logio N(M > m) = a — bm, (1)

where the precise values of a and b depend on the loca-
tion, but empirically b is in the interval 0.8 < b < 1.5
[16]. The energy E (or other physical quantities such as
the “seismic moment”) released during the earthquake
is believed to increase exponentially with the earthquake
magnitude,
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logio £ = c+dm, (2)

where the value of d is 1 and % for small and large earth-
quakes, respectively [17]. Thus the Gutenberg-Richter
law is essentially a power law connecting the frequency
distribution function with energy greater than FE,

N(E)~E™%, 3)

with 0.8 < B < 1.05. Immediately after the introduction
of the idea of SOC by Bak, Tang, and Wiesenfeld, it was
suggested that SOC might be a good explanation for the
observed power laws in earthquakes [18-20]. However,
most of these suggested models are conservative and have
no physical interpretation in the context of earthquakes.

The properties of extended fractures in earthquakes
have been explored in a number of earthquake model pa-
pers, dynamically [10,21-24] and statistically [25]. One
model that has received considerable attention is the
stick-slip model of Burridge and Knopoff (BK) [21] where
chains of metal blocks connected by springs are dragged
along a surface. This model demonstrates that the num-
ber of shocks with energy release above F follows Eq. (3)
with B ~ 1 in their one-dimensional system. Related to
the scaling properties in earthquake processes, dynamic
phase transitions have been observed. Takayasu and
Matsuzaki [26] extended the one-dimensional Burridge-
Knopoff model to a multidimensional mechanical model
and found that it has an order-disorder phase transition,
above which the entire system slips together as one clus-
ter. The behavior of the system depends on the strength
of the coupling. In the critical state of this model, the
size distribution of clusters follows the same power law
as that of earthquakes. Their two-dimensional model
is similar to the BTW model. Recently, with a non-
conservative self-organized critical model equivalent to a
quasistatic two-dimensional version of the spring-block
model of Burridge-Knopoff, the nonuniversality of the
critical exponent and a dynamical phase transition from
localized to nonlocalized behavior are found as the level
of conservation is increased [10]. As in a version con-
sidered by Carlson and Langer [22], nonlinear friction
with respect to the velocity is introduced to a homoge-
neous BK spring-block model so that the parameters of it
divide the behavior of the system into qualitatively dis-
tinct regimes [24]. By varying one of the parameters, this
model appears to exhibit a continuous transition from a
state where all the blocks are continuously moving to an-
other one where the motion occurs in short, but violent,
ruptures.

Comparing with the earthquake models, the statistical
properties of the ruptures of fiber bundles are a classi-
cal problem which has been studied over a number of
years apparently initiated by the work of Peirce [27].
Failure is often associated with the statistics of extremes
[28-30] and thus is typically studied through the model
of links with randomly distributed failure thresholds as-
sociated in series [30]. Daniels first considered the fol-
lowing fiber-bundle problem: parallel vertical lines with
identical spring constant but random failure thresholds
where the total stress is equally shared among the links
[31]. Note that the problem is posed in similar terms in

the electrical or mechanical context with the correspon-
dence of spring constant to link conductance, mechanical
stress to electric current density, and mechanical strain to
electric voltage [32]. It can model a variety of systems,
such as cables or ropes made of numerous fibers, geo-
logical faults which are locked by asperity barriers shar-
ing the total stress [33,34], electric networks, etc. Also,
such a fiber bundle has been discussed further recently
[35,36], and been generalized by connecting bundles of
parallel fibers in series [37,38]. Fiber-bundle models such
as these, which have at least a superficial resemblance
with the earthquake problem, demonstrate the existence
of the power-law distribution of failure.

Motivated by both BK and fiber-bundle models, we in-
troduce in this paper a nonconservative, globally coupled,
spring-block model, which is the simplified variant of the
BK model by mimicking the extended fractures in earth-
quakes and yet is referred to bundles of parallel fibers in
series. Since the presence of different time scales is sup-
posed to characterize some properties of failure events, as
discussed by Gabrielov, Newman, and Knopoff through
quasistatic lattice models [39], a time-scale parameter has
been defined in this model so that the dynamical process
is considered more carefully than in some previous ones
[10,40]. Numerical and analytical studies show that this
model differs greatly from the previous ones, with fasci-
nating features, i.e., the coexistence of two distinct states
and the phenomenon of hysteresis in the transition be-
tween these two states, which was reported briefly in Ref.

41].

[ I]n Sec. II, the model is described in detail. Section III
serves as the illustration of two different types of dynam-
ical states in this system. The phase transitions between
the two states are discussed in Sec. IV by simulations.

II. MODEL
A. General description

Suppose that a total number N of blocks are placed on
a carpet (see Fig. 1). All blocks are connected to a rigid
bar individually through a total number N of springs
which are of the same elastic modulus k3. In addition, the
bar is connected to a trunk spring with elastic modulus
k1, and the other tip of the trunk spring, A, is drawn
steadily. We assume that there is only static friction
between every block and the carpet, and that the carpet
is nonuniform so that the maximum static friction may
be different at various places on it. Introducing a control
parameter k = K1/(k2N) [40], we obtain the equilibrium
condition

N
Ni(d—z) =) = (4)

=1
for the rigid bar, where z; is the strain of the ith spring,
and d and z are the displacements of the tip A and the
bar, respectively. The threshold of strain, t;, for the ith
spring, corresponding to the maximum static friction be-
tween the ith block and the carpet, is picked from a prob-
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FIG. 1. A sketch of the spring-block system under consid-
eration.

ability p¢n(t), called the threshold distribution function
[30,23]. Beginning from some initial conditions, d, z, and
z; (1 <14 < N) increase uniformly as the tip A is drawn
steadily. When the strain of some spring, say the ith one,
z;, reaches its threshold ¢;, the block will move. Letting
y; = t; — x;, we note that the block with the smallest y;
must slip first. Since the spring connected to the slip-
ping block no longer carries load, the trunk spring will
relax a little, whereas the loads of the other springs will
increase. Therefore the strains of other springs may ex-
ceed their thresholds, and the corresponding blocks slip
too. So a chain reaction, or a shock, might occur in the
spring-block system.

B. The presence of three time scales

In the spring-block models studied previously it was
usually assumed that the slipping block could restick to
the carpet at once [10,40]. However, in a real spring-block
system the loads on the springs are redistributed among
the springs as the block is moving. For this model, we
have three different scales of time: the time 74 needed
for the tip A to move a unit distance, the relaxation time
Tgr for the redistribution of the load among the springs,
and the time 7g for the moving block to restick to the
carpet. Since the time interval between earthquakes is
much larger than the actual duration of an earthquake,
we assume that 76 K74 and TR<K74, yet the ratio of 75 to
TR remains variable. For the case of 7¢ < 7g, as consid-
ered previously [10,40], the moving block could restick
to a new place long before the springs rearrange their
strain distributions. If 7¢ > Tgr, however, any moving
block cannot restick until the chain reaction ceases. Tak-
ing the interval between two shocks as the time unit, we
have that the total number T of the shocks is simply the
total time of the process.

In order to discuss the general case, we introduce a
time-scale parameter [39] A € [0,1]. This parameter is
expected to describe roughly the ratio 75/(7rN). The
precise definition for this parameter is such that there
could at most be AN springs carrying no load at the same
time. Suppose that there have been a total number m —1
of blocks slipping at one time. When there is still some
spring, say the jth one, the strain z; of which is larger
than the threshold ¢;, the jth block will slip. If m < AN,
there will be a total number m of blocks slipping, and the
load has to be distributed on the other N —m springs. If
m = AN, the earliest slipping one within these AN blocks

will restick on the carpet immediately after the jth block
slips. Therefore, owing to the slip of the jth block, the
strains of the springs corresponding to the sticking blocks
will increase dzx,

e L r if m <AN
bz = (RHYN-m . ’ 5
{G?ﬁﬂﬁ if m=AN. )

It is clear that A = 0 corresponds to the limiting case
Ts < Tg previously studied in detail in Ref. [40], and A =
1 to 75 > 7Tr. In the present paper, we generally discuss
the case of A > 0. It is worth pointing out at last that we
do not actually consider explicitly the different fast time
scales but substitute the ratio of them by a restriction on
the maximum possible number of simultaneously slipping
blocks. However, this leaves open the question of the
correspondence of the effects of this restriction and the
possible effects of actual fast time scales [39].

III. THE TWO DYNAMICAL STATES

Let us first investigate a limiting case A = 1. In simula-
tions we take a uniform threshold distribution p:(t) = 1
for 0 <t <1, and choose k = 0.25 and N = 10000. De-
pending on the initial conditions the system may evolve
into two types of states. For example, if the initial dis-
tribution of {y;} is po(y) = 2(1 — y) for 0 < y < 1, the
state into which the system evolves is called type I. If,
on the other hand, the initial distribution is po(y) = 1
for 0 < y < 1, the state in which the system finally
dwells is called type I1. For any initial conditions the
system evolves always into one of these two states with a
probability. There are three pieces of evidence, i.e., the
stick-slip processes, the strain distribution functions, and
the power laws of shock-size distributions, convincingly
showing that these two types of states are different from
each other.

A. The stick-slip process of blocks

The stick-slip processes of the two types are qualita-
tively different. Figure 2 shows the typical cases of the
stick-slip processes of two types. The total number A
of blocks which slipped during a shock is defined as the
size of the shock. A series of large-size shocks with a
size O(NN) occur almost periodically in type II, where
almost all blocks slip simultaneously so one may call it
“superslip” event. Such a “superslip” event has also been
observed in other spring-block models [24,26]. By con-
trast, in type I, there are normally small-size (A <« N)
shocks distributed randomly with respect to time. Never-
theless, we also consider the system of a small number of
blocks far from the initial strain distribution in order to
robustly distinguish chaotic behavior of the model from
complicated periodical behavior in type II. Simulations
with N = 300 after 2 x 10® transient processes confirm
the periodical behavior in all the times as long as the
system is kept in type II, given in Fig. 3 as T from 0 to
10 000.
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FIG. 2. The typical stick-slip processes for the states of
two types. They are obtained with N = 10000, x = 0.25,
and A = 1. The configurations of two types are different due
to the initial states of the system. (a) type I; (b) type II. The
lines with arrows away from the tops of the columns in (b)
indicate that A ~ 10 000.
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B. The evolutionary functions of strain distributions

The evolutions of the strain distribution of {y;} in
these two types of states are different also. It can be
demonstrated that the strain distribution function is sta-
tionary for type I but periodically changeable for type II.
In order to see this conclusion, let us consider the shocks
with small size A < N. Assume that {y;} is the or-
dered sequence y; < y2 < -+- < yn. In a shock of size A
starting at a certain place where the displacement of the
bar is z, we know from Eq. (5) that after a number j of
blocks slip, the bar will move forward by a distance

J
D=
=1

1,2,...,A.
(’{+1)N—J, ’ ) , (6)

J

z e* [Z po(&)e¢ dE,
p(y,z)z{po(y+)+ Jo po(§)e™* d¢

1919
400 :
300 i
< 200 I
100 H H
0
0 5000 10000

T

FIG. 3. The complicated periodical behavior of a small
number N = 300 of blocks with A = 1 and « = 0.25. The
relaxation time is 2 x 10° while the system is kept in type II.

Since the displacement z of the bar monotonically in-
creases with the time 7', z may take the role of time.
Denoting by p(y, z) the distribution of {y;} at “time” z,
we have for any shock of size A that

éa
P2+ 68) = p(y + 62, 2) + Pen(y) /0 p(E, 2) dE,

y€[0,1—-64a], 2>0. (7)

For type I, as small A makes §p < 1, Eq. (7) may be
written as a partial differential equation,

Op(y,z) _ Op(y, =)
2z~ oy + pen(v)p(0, 2),

y €[0,1], 2> 0,
P(y, 0) = pO(y)3 Yy € [0’ 1]’ (8)
p(l,2) =0, z>0,

where po(y) is the initial distribution of y;’s.
For a uniform distribution p,(t) = 1 in [0, 1], the so-
lution of Eq. (8) is easily given as

ysl—Z,

9
e [Zpo(€)e~8dE — extvt [TV pg(¢)emEdE, 1 -2 <y <1, ©)

when z < 1. For n < z < n + 1 the variable z in Eq. (9)
should be replaced by z — n and the function po(y) by
Pn(y), where

Pn(y) = p(y,n)

1
= /0 P (€)eEdE — &Y A Y 1 (€)e=C de.
(10)

|

As z — oo the distribution p(y, z) evolves into a station-
ary state, poo(y) = 2(1 — y), independent of the initial
distribution po(y). This is confirmed by our simulation.
In general, we know from Eq. (8) that, for an arbitrary
distribution psx (t) of {t;}, the stationary solution p(¥)
of p(y, z) must satisfy dp(y, z)/0z = 0. Hence,

dpoo (¥)

=2+ pun (4) Poo(0) = 0. (a
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Then we have that

Poo(Y) = Np/ pen(§) dE, (12)

Y

100(Z +9) + [y d€ pen(€ + y)p(0,2 — §),
d& Pth 5 + y) (O,Z - g)a
Jo 7Y d€ pn(€ +y)p(0,2 — €),

p(y, z) = fo

where the coefficient IV, stands for the normalization con-
stant. The stationary solution ps(y) can be reached by
the system when z — co.

We can also transform Eq. (7) to the integral equation

ySl—Z, ZSla
l-2<y<1,z<1, (13)
z>1.

Let g(z, z) denote the distribution of z;’s at “time” z. Since t = z +y has the distribution p;s(z +y) and y has p(y, 2),

we can express ¢(z, z) with the formula

q(ﬂU,Z):/O _mdy p(y,z)'y(z,y,z),

where y(z,y, z) is the probability condition of strain # with both y and z given, and can be expressed as

pm(m+y)[po(y+1)+p(0z m)]

v(z,y,2) = w

pu.(w+y)p(0 z— m)
p(y,z)

Obviously, only if z may diverge in type I while the above
equations remain applicable may v(z,0, z) reach a sta-
tionary solution together with p(y, 2), i.e.,

¥(z,0,2z = 00) = pn(x). (15)

For type II, since the system is of periodical shocks of
very large size (A = N) as show in Fig. 2(b), the integral
Eq. (13) is applicable only between two large-size shocks.
We argue that the distribution function p(y, z) would not
be stationary but rather periodically changed with re-
spect to z. Let us consider that the system produces a vi-
olent shock of size A = N at “time” z = Z;. Immediately
after this moment, the strains z; of all springs are zero,
so that p(y,Z; + 0) = pu(y). Then p(y, z) will evolve
repeatedly with z according to the integral Eq. (13)
until the next global slip takes place at some “time”
Zy = Z1 + zp (z, will be analytically given somewhat
later) where p(y, Z2) = p(y, Z1) = pin(y). Therefore one
has a nearly periodical function p(y,z + z,) = p(y, 2),
and correspondingly a periodical y(z,y,z) with respect
to z for this type as well. Simulations confirm that the
distribution p(y, z) for type II is indeed a periodically
evolutionary function, and that immediately after every
global slip it is the same in statistics.

C. The different shock-size distributions
for two states

Now we are going to determine the shock-size distri-
butions D;(A) and Dyr(A) for states of type I and II,
respectively. The algorithm is mainly based on that in
Ref. [36]. As described before, the {y;}’s appear to be
in the ordered sequence y; < y2 < --- < yny. Denoting
by d the displacement of the tip A, we see from Eq. (4)
that in order to move the first block the tip A should

ySl—Z,
y>1—2,2<1, (14)
z>1.

[

reach d; = dp + y1(k + 1)/ apart from do, the initial
position of A. In general, in order to move the jth block
the displacement of A should be

Mo lrizd, '——Zu (16)

For a shock of size A, a forward condition and a backward
condition must be satisfied.

d; =do +

1. The forward condition

The forward condition mentioned is
dj <dy, j=2,3,...,A, (17)
and

dA+1 > dy. (18)

The two equations (17) and (18) are, respectively, equiv-
alent to

N(k+1) 1 =

N(n+1)+1—jy1+N(n+1)+1—j;m"’

y; <

i=2,3,...,A, (19)

and

A
N(k+1) 1
yat1 > N(n+1)—Ay1+N(n+1)—A;‘”"

Assuming A < N and letting a = 1/(k + 1), one may
simplify Egs. (19) and (20) to
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yj<y1+6j—15 j:2a37--~aA1 (21)

and

Ya+1 > Y1+ 64, (22)

with

1
e I PILE OV

The simplified forward condition (21) and (22) means
that the A —1 y values ys,...,ya must lie in the interval

(¥1,y1 + 6a-1), and N — A values yai1,Ya+2,---> YN
must be larger than y; + da. The probability for this is

v@ea=(31;)

P(y, +da-1,2) — P(v1,2) a-t
8 [ 1 —P(y]_,Z) ]

9 1—P(y1 +6a,2) N-a 04

1-— P(yl, Z) ’ ( )

where P(y, z) fo )d€. Since A <« N is assumed,

we may expand P(y, ) m da to the first order, thus
obtaining

ein ooy (N1 [P1,2)8a-1]77"
V(A i, 2) = (A - 1) [1 — P(y1,2)
N-A
P(y1,2)0a ]
X [1—- —F— . 25
|: 1- P(ylvz) ( )

The last factor on the right-hand side of this expression
is, for large N — A, essentially

S

where Eq. (23) has been used. The binomial coefficient
in Eq. (25) may for N > A be approximated by

N -1 -

A-1)~
Noticing y; ~ 0 and denoting s(z) = ap(0, z), one derives
from Eq. (25) that

1 A—1 A—-1
P (A, i, 2) = W {s(z) Z .’III}

X exp l:-s(z) Z xl] . (28)

,A_

(N —1)2-1

A =1) (27)

Integrating the above equation over z; (i = 1,2,...
1) we get the probability

T*(A, 2

) = (’i(f) Io(s(z [H/ dx;y(z;, 0, z)}
- A-1 A—1
X I:Z xz] exp [—s(z) Z :c,] ,  (29)

with Io(s(2)) = fol e *()%y(z,0, 2) dz.

It remains to secure that all the A —1 inequalities (21)
are fulfilled, i.e., that y2 < y1+61,ys < y1+9J3, etc., given
that all the A — 1 elements lie in the interval (y;,y1 +
da—1). Since the probability density can be considered
constant in the small interval, this is equivalent to the
following combinatorial problem: A — 1 elements are to
be randomly distributed among A — 1 numbered slots,
and the first slot contains at least one element, the two
first slots contains at least two elements, and so on. This
additional condition can be described by

J
=1

with Ez 1 5 = A — 1, where f; is the number of ele-
ments in the ith slot. With these additional conditions

considered, the forward probability is finally derived from
Eq. (29) as

L A=2, (30)

A—1 .1
T(A,z) = (Si) Io(s(z))[HA dmi'y(a:i,O,z)]

A—1 A—-1
.’l:,jl S‘f I:Z J},:I 5 (31)

where S ¢ is an operator which selects those terms in the
polynomial satisfying the conditions (30).

A—-1

X exp l:—s(z) Z

2. Backward condition

It is obvious that shocks observed in experiments only
occur at some values of z. The forward condition is,
hence, not certainly sufficient in order to determine the
distribution of the shocks with size A. Going through
the whole experiment, we record the displacement z; of
the bar corresponding to the i¢th event of block slip when
tip A is steadily driven. Since the block slips only if
the corresponding y = 0, there is a distribution p(0, z)
of z;’s. Also assume z;’s in an ordered sequence, i.e.,
z1 < 23 < --+ < zy. The block-slip events in a whole
process are w = N foz‘" dzp(0, z) as z increases from 0 to
Zyw. Assuming that in the beginning of the experiment
z = 0 and correspondingly d = do, we find that in order
to move the kth block the displacement of A must reach

k—1
~ N(I‘L+1)+1——k 1 ,
d = do + Zp — — E x;, (32)
Nk Nk ~

similar to Eq. (16), expecting that the z}’s are the strains
when z = 0. For a shock to start at z = 2z, we must
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secure that dj exceeds all previous values,

dk_]'<dk, j:1,2,...,k—1, (33)
which may be called the backward condition. Otherwise
the shock may occur inside a large one, and consequently
will not be recorded in experiments with driving of the
tip A. For a large N, experiencing a procedure as done
on the forward condition, we may equivalently transfer

Eq. (33) into

2p—j < 2 — b;, i=1,2,...,k—1, (34)
where
~ o J
iy > s (35)
=1

It is clear that in general it is the first few neigh-
boring values, di_;,dg—2,..., that are most likely to
exceed dj due to fluctuations. Let us therefore deter-
mine x(L, zx), the probability that none of the values
di—1,dkg—2,...,dr_1, exceeds dy, for L < N.

To determine x(L, z) we need according to Eq. (34)
the probability that

Zp—j < zr, — 6j, 7j=12,... L. (36)
This implies that a number h, not exceeding L — 1, of
elements may lie in the interval (z — 0L, 2x — 61), while
all the k —1— h remaining elements must be smaller than
2z — 0r,. The probability for this is

(k;l) [ﬁ%oozﬁ,f) Z s ]

(0 ) L k—1-h

where Q(y, z) = fo §) d€ and k = NQ(0, 2x). Since
k is of order N and N >> 1, the last factor on the right-
hand side is essentially

L
exp {—M Z :z:;_z] (38)

NQ(O9 zk) i=1
and the factorial may for k£ > h be approximated by
k—1 k"
39
("3 1) =% (39)
With the notation of NQ(0,zr) = k, we sum Eq. (37)

over the allowed values of h and then have from Eq. {37)
the probability

- h
Z k) exp [—s zk)z.’z:k 1:| [ka 1] ,  (40)

recalling s(z) = ap(0, z). Integrating the above equation
over all «’s we get the probability

L 1
X*(Lazk) = Io(s(zk)) [HA d$§c~i’7(m;c—i’ovzk)]

E ( exp [—s(zk)z.avk ,]

h

L
x [Z x;_,] : (41)

It remains to secure that the h values in the interval
(21 — L, 2k — 01) fulfill Eq. (36). This is again a combi-
natorial problem with L — 1 slots, such that the first slot
to the right can at most contain one element, the two
rightmost slots can at most contain two elements, and so
on. This condition can be described by

. L-1, (42)

J
Zbi < J’
=1

with Zf’z_ll b; = h, where b; is the number of elements in
the zth slot to the right. Equation (29) is thus modified
to

L 1
X(Lazk) = IO(s(zk)) I:H/ dx;c-—i')'(x;c—ivo’zk):l
i=2Y0

s(zx)? L
x Z ( k) exp I:—s(zk) Za:;c_z]

L h
x S [Z m;_i] , (43)

where S, is an operator which selects those terms in the
polynomial satisfying the conditions (42). Finally, the
backward probability for a shock starting at z under con-
ditions (33) should be obtained by increasing L — oo in
the probability x(L, z), i.e.,

m(z) = Lli_)moo x(L, z). (44)

Let us roughly discuss the backward condition in an-
other way which might give some physical insight. The
probability for all conditions (42) to be fulfilled is (see
the Appendix of Ref. [36])

Lh—l
(L—1)»

Inserting the factor € r—; into Eq. (40), we have the
desired backward probability

enz-1 = (L—h) (45)
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X(L,zx) =

_S_th1

Since N > L > 1, we approximately have that z}_, =

exp [~s(zk) Z Th_;
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h
(46)

]

th—i — Yk—i = tg—; (¢ < L) and therefore Ef:l z_, = L(t)

and Ef:z zf_; = (L — 1)(t), where (t) = fol t pin(t) dt. Then we obtain from Eq. (46) that

L-1

V(L) = expl—(Os(z0 L] 1 S (O s( 11"

h=0

= [1 — (t)s(zk)] exp [—(t)s(

Since ({t)s)’ exp(—(t)sL) < exp(—L), the last term on
the right-hand side of Eq. (48) is seen to vanish when L
increases. Moreover, when the sum continues to co, the
first term is to approach the value

x(L, zx) = m(z) = 1 — (t)s(z). (49)

Now that the backward probability m(z) has been de-
termined, we may investigate the periodicity of type II
and its possibility of transition to type I. Serving as an
example, the uniform distribution px(t), i.e., per(t) =1
in [0,1], is used here. We thus have (t) = 1/2 and
s(z) = €*/(1 + k) where the result of Eq. (9) has been
used with y = 0. Letting m = 0 in Eq. (49), ie., a
“superslip” event occurs in the system, we obtain

eZ
1= 2(1+ k) (50)
For a given k, the period of z is the solution of the above
equation, i.e., z, = In2(1 + k). Correspondingly, the
period of T is simply that

7,- N [ 7 dep(0,£)m(e). (51)

From Eq. (50) it is clear that z, is a monotonically in-
creasing function of k. As z = 1 in Eq. (50) & reaches
its upper value, denoted by ky = e/2 — 1 ~ 0.36, beyond
which the “superslip” event cannot occur any longer so
that the system only shows the state of type I. Finally,
we emphasize that z, and T}, also may be determined for
the general case of p;s(t) by the above means.

3. Distributions D(A)

Based on the forward and backward probabilities ob-
tained in the preceding paragraphs, we can determine the
distribution D(A) of shock with size A for the whole pro-
cess when driving tip A steadily. It is derived next that
the distribution D(A) is two distinct power laws whose
exponents are —1.5 and —2.5 for type I and type II, re-
spectively.

For type I, since the strain distribution p(y, z) is of the
stationary form, i.e., p(y, 2) = Poo(¥y), the backward prob-
ability given in Eq. (49) is essentially a constant 1 — a(t).

=)L) Z [0 | o [ 1ys(aa)]

(47)

i (48)

—

The distribution Dr(A) is essentially from the forward
probability (A, z) of Eq. (31)

Di(A) = ¥(A,00)
s(oco0)2—1 A-1 1
= @5y nteen T1 [ devrten0.00
XPa(s, i) (52)
with
A-1 _[a-e A-1
éa(s,z;) = exp l:—s(oo) : m,} Sy [ mz] . (53)

Notice that y(z,0,00) = pir(z). Since Eq. (52) is similar
to the case of a model with prestrain distribution [40],
we study the above formula in a similar way. Take }3,
a permutatlon opera.tor of the z;’s, to symmetrize the
polynomial Sf(Z, 1 ' 2;)2~1in Eq. (53). Since the value
of D(A) is invariant under any permutation of z;’s, and
the total number of the permutations is (A —1)!, we may
replace the last term on the right-hand side of Eq. (53)
with

A-1

1 =
a2 P [Z w] !
(P} =1

where {P} indicates all the permutations. Using the
mean-value theorem of integration we have
s(c0)®
Di(A) = (_A“—')_IO(S(OO))¢A(S 1 0:) (54)

with 0 < 0; < 1fori=1,2,---,A —1. The 6;’s may
take identical values, say 6, due to the invariance of
the function ¢a under any permutations of z;’s. Con-
sidering there are a total number (A — 1)271 of terms
in the polynomlal (T4  2;)A~1 while only A%~2 in
S(A7 ;)21 [36], we hence have
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¢A(s, 0)

Substituting the above equation into Eq. (54) and us-
ing the Stirling approximation A! = A%e~2V/27A, we
finally obtain

= A27202 L exp[—(A — 1)8s(c0)].

Di(A) = C1A™2 exp(—A/A), (55)

where Cr = Ip(s(00)) exp[fs(00)]/[v/2m0s(c0)] and Ay =
1/[#s(o0) — 1 — Infs(o0)]. We have thus succeeded in
showing that the exponent of the power law (55) is uni-
versal, independent of the threshold distribution psp (t).-
Simulations for type I also confirm the same power-law
behavior in shock distributions as Eq. (55) (see Fig. 4).
Given a k, we increase N in the simulations and find that
Ay is seen to diverge.

Let us turn to the case for type II. The probability of
a shock of size A starting at “time” z is given by the
product of the forward and the backward probabilities
Eqgs. (31) and (44), i.e.,
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s(z)A-1 A-1
W(A,2) = s T (s(2) [_H / dm(mi,o,a]

x Jlim [II / daly_ (@), ,z)]

><¢A(s Ti, Th_;) (56)
with
&A(s’xiam;‘:—i) = Z S( ) €Xp [—S(Z) Z mljl

h=0

X exp [—s(z) Z wfc_l}
A—1 :2 L h

xS; [Z xl} S [Z z;c—z]
i=1 =2 (57)

Also symmetrizing the polynomials on the right-hand
side of Eq. (57) with all possible permutations of x’s,
we have

) L—1 s(2)h L
da(s, zi,Th_;) = exp [—s(z) Z :cz} exp |:—s(z) Zw;_l]

We also can pick an identical value 6 for all z’s when the
mean-value theorem of integration is applied to Eq. (56).
Since there are a total number (A — 1)2~! of terms
in the polynomial (EZA:"II z;)2~! while only A2~2 in
85(027 w0, and (L — D* in [2F, 0 J* while
only (L — h)L*™! in Sb[zz 5 Th_;]" [36,40], we derive
from Eq. (57) that

AA—I

W(A,2) = S T(s(2) 1 expl—(a

-1l

L—1
X {Lli_r)réoexp[—(L —-1)f] hz::o %}%Q(Lf)h} >
(59)

where f(z) = fs(z) and § € [0,1]. Dealing with the term
inside the brace of the right-hand side of Eq. (59) in the
same way as used in Eq. (47), we then get

AB I3(s(2))e?f

W(A,z) = — 7 =) (fe)2. (60)

Finally, we must integrate Eq. (60) over z in a period,
since a shock of size A may occur at any point of z before
the superslip of the whole system. Thus the distribution
of a shock of size A for type II is

st o B3(s(z))e
Dri(A) = ——— dzp(0, z) —————
1(8) = T [ de(0.) 22
x(1 - f)[fe 7]%, (61)
where I = f(;"’ dz p(0,z)m(z), and z, represents the pe-
0.0 T T T T —]
\ ;
| N |
-5.0 Ao
=
<
—10.0 A
7
-15.0 T T T T T
0.0 1.0 2.0 3.0 4.0 5.0 6.0

InA

FIG. 4. The distributions D(A) of the shocks of size
A as N = 10000, «x = 0.25, and A = 1 for the two
types: (I) type I; (II) type II. These could be well fitted as
D(A) ~ A™'®exp(—A/Ay) for I and D(A) ~ A™%5 for II,
respectively.
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riod of type II such that m(zp) = 0, ie., f(2,) = 1.
We may employ a saddle-point approximation to per-
form the above integration. The function inside the
bracket has a maximum of 1/e for f = 1 at the value
zp. Expauding around the maximum to second order in
z — zp, integrating, and using the Stirling approximation
Al >~ APe~24/27A, we obtain the asymptotic result

Dyr(A) = Cr A3, (62)
with

Cir = (0, Zp)eflg(s(zp)) )
V270s, (z,)T

Thus we have succeeded in showing that the different
power laws Eq. (55) and Eq. (62) for the states of the
two types are all universal, independent of the threshold
distributions. Note that these analytical results are ob-
tained in the thermodynamic limit N — oo, and accord
with the simulations shown in Fig. 4.

Based on the above discussions, it is clear that this
system shows dynamical states of two types which are
different in the stick-slip processes as illustrated in Fig. 2,
in the evolutions of the strain distribution functions, and
in the power laws of shock-size distributions as described
in Egs. (55) and (62). These two states could coexist over
some region of the parameter space, e.g., at x = 0.25 and
A = 1.0, depending on initial conditions. It is apparent
that these two dynamical states in this model are not the
same as claimed in Ref. [10].

D. The general A case

Now that the property of the system for A = 1 has
been explored in the preceding paragraph, we continue to
discuss the general case of A. At first, we mention another
special case of A = 0 which is completely equivalent to
that of a model with prestrain distribution [40]. In this
special case, as discussed in Ref. [40], in spite of the shock
size, the probability p(y, z) of y;’s may be appropriately
described by Eq. (8), reaching the stationary solution
of Eq. (12). Correspondingly, v(z,y,z) is described as
Eq. (15). Consequently, the distribution D(A) of a shock
of size A is of a power law similar to Eq. (55) so that the
system only evolves into a state of type I, independent of
the initial conditions. We have confirmed these results by
our simulations, and designate Fig. 5 as a representation.

The dynamical states of two types have been charac-
terized in detail with the typical case of A = 1. For
an arbitrary A € (0,1), there are also two states dif-
ferent in the stick-slip process, the strain evolutionary
function, and the distribution of shock size. Depending
on the initial distribution of strain and the parameters,
the system may also evolve into one of the two states
defined above. Because analyses for this case cannot be
performed as simply as for A = 1, we just employ simula-
tions to discuss the different states of the system. With
ptn(t) = 1in [0,1] and N = 10000, we show for the two
types the stick-slip process of blocks and the distribution

D(A) in Fig. 6 and Fig. 7, respectively, using represen-
tative values A = 0.8 and « = 0.25. For type I, the
numerical results of D(A) may be well fitted as in Fig. 7
as D(A) ~ A™"exp(—A/Ag) similar to Eq. (55) for the
case A = 1. In other words, we have n ~ 1.5 and a fi-
nite characteristic size Ag for general A. For type II, the
periodicity of the emergence of large-size shocks remains
but the length of the period is smaller than for A = 1.
The distribution D(A) may be well fitted by the formula
D(A) ~ A™", and otherwise the exponent n goes down
beneath 2.5 (not smaller than 1.5) as A decreases from
1.0 under a fixed k. One may from the stick-slip process
as in Fig. 6 still expect that the evolutionary functions of
strain are stationary and periodical for type I and type II,

500 : —— : —
<1250 A 1
. Wl |
| ’{ “, ‘! IR
0 A lunuLl L.v...‘..“ Al ’Jl.]lul.n. ML NA.JA
0 WO?OO 20000

0.0

-5.0 |
=
= b
=
—-10.0 |
_150 T T L T T
0.0 1.0 2.0 3.0 4.0 5.0 6.0
(b) InA

FIG. 5. The limiting case of A = 0: (a) the stick-slip pro-
cess; (b) the distribution D(A) of shock for size A, fitted well
by A% exp(—A/Ap). N = 10000 and « = 0.20 are used
here. There is only a state of type I in the system for this
pair of parameter values.
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0 10000 20000 30000
(a)
1500 . i
12
|
1000 - 84 1
< 1 0 -l n‘\uuhuH 1
500 | 1
o :
O = i T Ar r‘l D
0 10000 20000 30000

(b)

FIG. 6. The typical stick-slip processes for the states of
two types. They are obtained with N = 10000, x = 0.25,
and A = 0.8. The configurations of two types are different
due to the initial states of the system. (a) type I; (b) type II.
The lines with arrows away from the tops of the columns in
(b) indicate that A ~ 10000.

-5.0

InD(A)

~10.0 S 3 J

—150 T T T T T
0.0 1.0 2.0 3.0 4.0 5.0 6.0
InA

FIG. 7. The distributions D(A) of the shocks of size
A as N = 10000, x = 0.25, and A = 0.8 for the two
types: (I) type I; (II) type II. Those could be well fitted as
D(A) ~ A7 5 exp(—A/Ao) for I and D(A) ~ A™22 for II,
respectively.
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respectively, in A € (0,1). So one may understand that
the system presented here displays two states which are
distinct in three aspects as emphasized before.

IV. THE TRANSITION BETWEEN TWO STATES

We now come to investigate the dynamical transitions
of the system by numerical simulations. By setting differ-
ent initial conditions and surveying the stick-slip process,
the exponent 7, and the characteristic size Ay for vari-
ous values of k and A, we can get a phase diagram in
the x-A plane (Fig. 8). A system with given values of
parameters is represented by a point in the k-A plane.
For a large N (> 10000), starting from a representa-
tive point in the coexistent region of parameter space,
e.g., (0.25,1.0), to investigate the two possible states of
the system, we move the representative point in three
ways: (a) horizontally as k — 0 and A unchanged; (b)
vertically as A — 0 and x unchanged; (c) along a curve
A = 16x? toward the origin. In (a), the values of the
exponent 77 for the two types do not change, while the
period for type II decreases (as illustrated in Fig. 9), and
type I abruptly disappears at x ~ 0.15. With « < 0.15
any initial state leads to type II. In (b), as shown in
Fig. 10, the exponent 7 for type II decreases continuously,
and the state of type II disappears suddenly at A ~ 0.5.
When A < 0.5, the system always evolves into the state
of type L. In (c), the states of two types coexist in the sys-
tem while the characteristic size Ao for type I increases,
and the exponent n and period for type II decrease. As
A — 0 and k — 0, the differences between these two
states seem to disappear. So the system evolves into a
self-organized critical state with the power-law behavior
of shocks yielding D(A) ~ A~!5  and with a station-
ary strain distribution, independent of initial conditions
[4]. It remains that the bounds of the phase diagram of

e

FIG. 8. The sketch of the phase diagram for the model as
N = 10000. Symbol e indicates the existence of type I, and O
type II. The estimated boundaries roughly define the regions
in which the corresponding state could exist.
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FIG. 9. The decrease of the period for type II as k — 0.
As an example, with N = 10000 and A = 0.8 fixed, but &
changed to 0.05, the period of the above stick-slip processes
for type II has obviously decreased as compared with k = 0.25
in Fig. 6(b).

0.0

_150 T T T T
0.0 1.0 2.0 3.0 4.0 5.0

FIG. 10. The variance of the power-law exponent for
type Il as A — 0 under fixed £ = 0.25 in the k- plane.

type 11

FIG. 11. An example of the hysteresis phenomenon of the
model with A = 0.8, N = 10000, and the change of k per step
equal to 0.05. kr and Ky, respectively, measured to be about
0.15 and 0.30, are transition points of the type when « is qua-
sistatically changed along the opposite directions indicated
with the arrows.
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Fig. 8 slightly depend on N. From this phase diagram we
can easily understand that hysteresis could exist in this
model. For example, with a given A = 0.8 and a uniform
distribution p:x(t), when x € [0,0.5] is quasistatically
increased or decreased alternatively, one could find the
phenomenon of hysteresis (Fig. 11). A continuous tran-
sition was previously observed in a self-organized critical
cellular-automaton model equivalent to a driven spring-
block model when the level of conservation varies [10].
However, the dynamical phase transition presented here
is a different one since the transition takes place abruptly
as some parameter (e.g., k) changes.

V. CONCLUSIONS

The scaling properties of earthquakes has captured the
imagination of many physicists, and led to an explo-
sion of activity and publications. Various versions of the
spring-block model of earthquakes have been proposed to
understand such behaviors, and self-organized criticality
(SOC) is perhaps the underlying mechanism [18,19,22].
As nonconservative ones, the models of earthquake ro-
bustly display SOC without the conservation law neces-
sary in noisy driven diffusion systems [5].

In this paper, we investigate SOC in earthquakes
through a modified Burridge-Knopoff model where there
are two types of dynamical states which are different from
each other in the stick-slip process of the blocks, the evo-
lutionary distribution of strain, and the power-law be-
havior of shock distribution. For the limiting case A =1
we analytically obtain the strain distribution functions
and the power laws for the two types. Simulations show
that the two distinct states may coexist in some region
of parameter space. A transition and a hysteresis phe-
nomenon are seen when the parameters are appropriately
changed. The phenomenon of hysteresis is perhaps the
most interesting feature of our model.

Besides the earthquakes, there appear to be some other
phenomena in nature related to the theoretical spring-
block model of this paper. In a type-II superconductor,
under small perturbations in the driving force, a system
of pinned flux lattices shows an analogous stick-slip pro-
cess where free-flow and stick regimes are found corre-
sponding to large and small driving force, respectively,
and it exhibits a power-law distribution characteristic of
SOC [42]. In biology, the electrical activity of the pan-
creatic 3 cells in an intact Islet of Langerhans shows that
a transition between active phase (chaotic spiking) and
silent phase (regular bursting) takes place as the size of
the clusters or the conductance of the cell is varied, and
that two phases may coexist in some range of the con-
ductance [43,44]. Also, it was reported that the proba-
bility density function of the dwell times in the open and
closed conformational states displays scaling functions in
protein dynamics [45]. There appears to be some under-
lying relationship between these natural phenomena and
the theoretical model of this paper.
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